Living Subjects Strategy for Imaging Intracellular Events in Single Cells and An Improved Bioluminescence Resonance Energy Transfer
نویسندگان
چکیده
Bioluminescence resonance energy transfer (BRET) is currently used for monitoring various intracellular events, including protein-protein interactions, in normal and aberrant signal transduction pathways. However, the BRET vectors currently used lack adequate sensitivity for imaging events of interest from both single living cells and small living subjects. Taking advantage of the critical relationship of BRET efficiency and donor quantum efficiency, we report generation of a novel BRET vector by fusing a GFP acceptor protein with a novel mutant Renilla luciferase donor selected for higher quantum yield. This new BRET vector shows an overall 5.5-fold improvement in the BRET ratio, thereby greatly enhancing the dynamic range of the BRET signal. This new BRET strategy provides a unique platform to assay protein functions from both single live cells and cells located deep within small living subjects. The imaging utility of the new BRET vector is shown by constructing a sensor using two mammalian target of rapamycin pathway proteins (FKBP12 and FRB) that dimerize only in the presence of rapamycin. This new BRET vector should facilitate high-throughput sensitive BRET assays, including studies in single live cells and small living subjects. Applications will include anticancer therapy screening in cell culture and in small living animals. [Cancer Res 2007;67(15):7175–83]
منابع مشابه
An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects.
Bioluminescence resonance energy transfer (BRET) is currently used for monitoring various intracellular events, including protein-protein interactions, in normal and aberrant signal transduction pathways. However, the BRET vectors currently used lack adequate sensitivity for imaging events of interest from both single living cells and small living subjects. Taking advantage of the critical rela...
متن کاملAuto-Luminescent Genetically-Encoded Ratiometric Indicator for Real-Time Ca2+ Imaging at the Single Cell Level
BACKGROUND Efficient bioluminescence resonance energy transfer (BRET) from a bioluminescent protein to a fluorescent protein with high fluorescent quantum yield has been utilized to enhance luminescence intensity, allowing single-cell imaging in near real time without external light illumination. METHODOLOGY/PRINCIPAL FINDINGS We applied BRET to develop an autoluminescent Ca(2+) indicator, BR...
متن کاملBTeam, a Novel BRET-based Biosensor for the Accurate Quantification of ATP Concentration within Living Cells
ATP levels may represent fundamental health conditions of cells. However, precise measurement of intracellular ATP levels in living cells is hindered by the lack of suitable methodologies. Here, we developed a novel ATP biosensor termed "BTeam". BTeam comprises a yellow fluorescent protein (YFP), the ATP binding domain of the ε subunit of the bacterial ATP synthase, and an ATP-nonconsuming luci...
متن کاملNoninvasive Stem Cell Labeling Using USPIO Technique and their Detection with MRI
Background: To date, several imaging techniques to track stem cells are used such as positron emission tomography (PET), single photon emission computed tomography (SPECT), Bioluminescence imaging (BLI), fluorescence imaging, CT scan and magnetic resonance imaging (MRI). Although, overall sensitivity of MRI compared to SPECT and Bioluminescence techniques are lower, but due to high spatial reso...
متن کاملDual Readout BRET/FRET Sensors for Measuring Intracellular Zinc
Genetically encoded FRET-based sensor proteins have significantly contributed to our current understanding of the intracellular functions of Zn2+. However, the external excitation required for these fluorescent sensors can give rise to photobleaching and phototoxicity during long-term imaging, limits applications that suffer from autofluorescence and light scattering, and is not compatible with...
متن کامل